Using Diversity for Classifier Ensemble Pruning: An Empirical Investigation
نویسندگان
چکیده
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملDiversity Regularized Ensemble Pruning
Diversity among individual classifiers is recognized to play a key role in ensemble, however, few theoretical properties are known for classification. In this paper, by focusing on the popular ensemble pruning setting (i.e., combining classifier by voting and measuring diversity in pairwise manner), we present a theoretical study on the effect of diversity on the generalization performance of v...
متن کاملCombining diversity measures for ensemble pruning
Multiple Classifier Systems (MCSs) have been widely used in the area of pattern recognition due to the difficult task that is to find a single classifier that has a good performance on a great variety of problems. Studies have shown that MCSs generate a large quantity of classifiers and that those classifiers have redundancy between each other. Various methods proposed to decrease the number of...
متن کاملAn Empirical Comparison of Pruning Methods for Ensemble Classifiers
Many researchers have shown that ensemble methods such as Boosting and Bagging improve the accuracy of classification. Boosting and Bagging perform well with unstable learning algorithms such as neural networks or decision trees. Pruning decision tree classifiers is intended to make trees simpler and more comprehensible and avoid over-fitting. However it is known that pruning individual classif...
متن کاملUsing Clustering for Generating Diversity in Classifier Ensemble
In the past decade many new methods were proposed for creating diverse classifiers due to combination. In this paper a new method for constructing an ensemble is proposed which uses clustering technique to generate perturbation in training datasets. Main presumption of this method is that the clustering algorithm used can find the natural groups of data in feature space. During testing, the cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical and Applied Informatics
سال: 2018
ISSN: 1896-5334,2300-889X
DOI: 10.20904/291-2025